Serveur d'exploration sur l'Indium

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Synthesis of colloidal nanoscaled copper-indium-gallium-selenide (CIGS) particles for photovoltaic applications

Identifieur interne : 001416 ( Main/Repository ); précédent : 001415; suivant : 001417

Synthesis of colloidal nanoscaled copper-indium-gallium-selenide (CIGS) particles for photovoltaic applications

Auteurs : RBID : Pascal:12-0347996

Descripteurs français

English descriptors

Abstract

In this work, Cu(In,Ga)Se2 (CIGS) nanoparticles were synthesized using a wet chemical method. The method is based on a non-vacuum thermal process that does not use selenization. The effects of temperature, source materials, and growth conditions on the phase and particle size were investigated. X-ray diffraction results confirm the formation of a tetragonal CIGS structure as the main phase with the purity more than 99% obtained by energy-dispersive X-ray spectroscopy (EDX). The morphology and size of the samples were investigated by scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Using these methods, 20-80 nm particles were obtained. Through measurements of the absorption spectra of CIGS nanoparticles, the band gap of the synthesized material was determined to be about 1.44 eV, which corresponds to an acceptable wavelength region for absorber layers in solar cells.

Links toward previous steps (curation, corpus...)


Links to Exploration step

Pascal:12-0347996

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Synthesis of colloidal nanoscaled copper-indium-gallium-selenide (CIGS) particles for photovoltaic applications</title>
<author>
<name sortKey="Mousavi, S H" uniqKey="Mousavi S">S. H. Mousavi</name>
<affiliation wicri:level="3">
<inist:fA14 i1="01">
<s1>INM - Leibniz Institute for New Materials</s1>
<s2>66123 Saarbrücken</s2>
<s3>DEU</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
</inist:fA14>
<country>Allemagne</country>
<placeName>
<region type="land" nuts="2">Sarre (Land)</region>
<settlement type="city">Sarrebruck</settlement>
</placeName>
</affiliation>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>Physics Department, Shahrood University of Technology</s1>
<s2>Shahrood</s2>
<s3>IRN</s3>
<sZ>1 aut.</sZ>
</inist:fA14>
<country>Iran</country>
<wicri:noRegion>Shahrood</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="M Ller, T S" uniqKey="M Ller T">T. S. M Ller</name>
<affiliation wicri:level="3">
<inist:fA14 i1="01">
<s1>INM - Leibniz Institute for New Materials</s1>
<s2>66123 Saarbrücken</s2>
<s3>DEU</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
</inist:fA14>
<country>Allemagne</country>
<placeName>
<region type="land" nuts="2">Sarre (Land)</region>
<settlement type="city">Sarrebruck</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="De Oliveira, P W" uniqKey="De Oliveira P">P. W. De Oliveira</name>
<affiliation wicri:level="3">
<inist:fA14 i1="01">
<s1>INM - Leibniz Institute for New Materials</s1>
<s2>66123 Saarbrücken</s2>
<s3>DEU</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
</inist:fA14>
<country>Allemagne</country>
<placeName>
<region type="land" nuts="2">Sarre (Land)</region>
<settlement type="city">Sarrebruck</settlement>
</placeName>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="inist">12-0347996</idno>
<date when="2012">2012</date>
<idno type="stanalyst">PASCAL 12-0347996 INIST</idno>
<idno type="RBID">Pascal:12-0347996</idno>
<idno type="wicri:Area/Main/Corpus">001896</idno>
<idno type="wicri:Area/Main/Repository">001416</idno>
</publicationStmt>
<seriesStmt>
<idno type="ISSN">0021-9797</idno>
<title level="j" type="abbreviated">J. colloid interface sci.</title>
<title level="j" type="main">Journal of colloid and interface science</title>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Copper</term>
<term>Energy</term>
<term>Gallium</term>
<term>Growth</term>
<term>Indium</term>
<term>Morphology</term>
<term>Nanoparticle</term>
<term>Particle</term>
<term>Particle size</term>
<term>Purity</term>
<term>Scanning electron microscopy</term>
<term>Selenides</term>
<term>Structure</term>
<term>Synthesis</term>
<term>Transmission electron microscopy</term>
<term>Wavelength</term>
<term>X ray</term>
<term>X ray diffraction</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Synthèse</term>
<term>Cuivre</term>
<term>Indium</term>
<term>Gallium</term>
<term>Séléniure</term>
<term>Particule</term>
<term>Nanoparticule</term>
<term>Croissance</term>
<term>Dimension particule</term>
<term>Diffraction RX</term>
<term>Structure</term>
<term>Pureté</term>
<term>Energie</term>
<term>Rayon X</term>
<term>Morphologie</term>
<term>Microscopie électronique balayage</term>
<term>Microscopie électronique transmission</term>
<term>Longueur onde</term>
</keywords>
<keywords scheme="Wicri" type="concept" xml:lang="fr">
<term>Cuivre</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">In this work, Cu(In,Ga)Se
<sub>2</sub>
(CIGS) nanoparticles were synthesized using a wet chemical method. The method is based on a non-vacuum thermal process that does not use selenization. The effects of temperature, source materials, and growth conditions on the phase and particle size were investigated. X-ray diffraction results confirm the formation of a tetragonal CIGS structure as the main phase with the purity more than 99% obtained by energy-dispersive X-ray spectroscopy (EDX). The morphology and size of the samples were investigated by scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Using these methods, 20-80 nm particles were obtained. Through measurements of the absorption spectra of CIGS nanoparticles, the band gap of the synthesized material was determined to be about 1.44 eV, which corresponds to an acceptable wavelength region for absorber layers in solar cells.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>0021-9797</s0>
</fA01>
<fA02 i1="01">
<s0>JCISA5</s0>
</fA02>
<fA03 i2="1">
<s0>J. colloid interface sci.</s0>
</fA03>
<fA05>
<s2>382</s2>
</fA05>
<fA08 i1="01" i2="1" l="ENG">
<s1>Synthesis of colloidal nanoscaled copper-indium-gallium-selenide (CIGS) particles for photovoltaic applications</s1>
</fA08>
<fA11 i1="01" i2="1">
<s1>MOUSAVI (S. H.)</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>MÜLLER (T. S.)</s1>
</fA11>
<fA11 i1="03" i2="1">
<s1>DE OLIVEIRA (P. W.)</s1>
</fA11>
<fA14 i1="01">
<s1>INM - Leibniz Institute for New Materials</s1>
<s2>66123 Saarbrücken</s2>
<s3>DEU</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
</fA14>
<fA14 i1="02">
<s1>Physics Department, Shahrood University of Technology</s1>
<s2>Shahrood</s2>
<s3>IRN</s3>
<sZ>1 aut.</sZ>
</fA14>
<fA20>
<s1>48-52</s1>
</fA20>
<fA21>
<s1>2012</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>4124</s2>
<s5>354000508348120070</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2012 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>19 ref.</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>12-0347996</s0>
</fA47>
<fA60>
<s1>P</s1>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Journal of colloid and interface science</s0>
</fA64>
<fA66 i1="01">
<s0>NLD</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>In this work, Cu(In,Ga)Se
<sub>2</sub>
(CIGS) nanoparticles were synthesized using a wet chemical method. The method is based on a non-vacuum thermal process that does not use selenization. The effects of temperature, source materials, and growth conditions on the phase and particle size were investigated. X-ray diffraction results confirm the formation of a tetragonal CIGS structure as the main phase with the purity more than 99% obtained by energy-dispersive X-ray spectroscopy (EDX). The morphology and size of the samples were investigated by scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Using these methods, 20-80 nm particles were obtained. Through measurements of the absorption spectra of CIGS nanoparticles, the band gap of the synthesized material was determined to be about 1.44 eV, which corresponds to an acceptable wavelength region for absorber layers in solar cells.</s0>
</fC01>
<fC02 i1="01" i2="X">
<s0>001C01J02</s0>
</fC02>
<fC03 i1="01" i2="X" l="FRE">
<s0>Synthèse</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="X" l="ENG">
<s0>Synthesis</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="X" l="SPA">
<s0>Síntesis</s0>
<s5>01</s5>
</fC03>
<fC03 i1="02" i2="X" l="FRE">
<s0>Cuivre</s0>
<s2>NC</s2>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="X" l="ENG">
<s0>Copper</s0>
<s2>NC</s2>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="X" l="SPA">
<s0>Cobre</s0>
<s2>NC</s2>
<s5>02</s5>
</fC03>
<fC03 i1="03" i2="X" l="FRE">
<s0>Indium</s0>
<s2>NC</s2>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="X" l="ENG">
<s0>Indium</s0>
<s2>NC</s2>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="X" l="SPA">
<s0>Indio</s0>
<s2>NC</s2>
<s5>03</s5>
</fC03>
<fC03 i1="04" i2="X" l="FRE">
<s0>Gallium</s0>
<s2>NC</s2>
<s2>FX</s2>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="X" l="ENG">
<s0>Gallium</s0>
<s2>NC</s2>
<s2>FX</s2>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="X" l="SPA">
<s0>Galio</s0>
<s2>NC</s2>
<s2>FX</s2>
<s5>04</s5>
</fC03>
<fC03 i1="05" i2="X" l="FRE">
<s0>Séléniure</s0>
<s2>NA</s2>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="X" l="ENG">
<s0>Selenides</s0>
<s2>NA</s2>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="X" l="SPA">
<s0>Seleniuro</s0>
<s2>NA</s2>
<s5>05</s5>
</fC03>
<fC03 i1="06" i2="X" l="FRE">
<s0>Particule</s0>
<s2>FX</s2>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="X" l="ENG">
<s0>Particle</s0>
<s2>FX</s2>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="X" l="SPA">
<s0>Partícula</s0>
<s2>FX</s2>
<s5>06</s5>
</fC03>
<fC03 i1="07" i2="X" l="FRE">
<s0>Nanoparticule</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="X" l="ENG">
<s0>Nanoparticle</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="X" l="SPA">
<s0>Nanopartícula</s0>
<s5>07</s5>
</fC03>
<fC03 i1="08" i2="X" l="FRE">
<s0>Croissance</s0>
<s5>09</s5>
</fC03>
<fC03 i1="08" i2="X" l="ENG">
<s0>Growth</s0>
<s5>09</s5>
</fC03>
<fC03 i1="08" i2="X" l="SPA">
<s0>Crecimiento</s0>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="X" l="FRE">
<s0>Dimension particule</s0>
<s5>10</s5>
</fC03>
<fC03 i1="09" i2="X" l="ENG">
<s0>Particle size</s0>
<s5>10</s5>
</fC03>
<fC03 i1="09" i2="X" l="SPA">
<s0>Dimensión partícula</s0>
<s5>10</s5>
</fC03>
<fC03 i1="10" i2="X" l="FRE">
<s0>Diffraction RX</s0>
<s5>11</s5>
</fC03>
<fC03 i1="10" i2="X" l="ENG">
<s0>X ray diffraction</s0>
<s5>11</s5>
</fC03>
<fC03 i1="10" i2="X" l="SPA">
<s0>Difracción RX</s0>
<s5>11</s5>
</fC03>
<fC03 i1="11" i2="X" l="FRE">
<s0>Structure</s0>
<s5>12</s5>
</fC03>
<fC03 i1="11" i2="X" l="ENG">
<s0>Structure</s0>
<s5>12</s5>
</fC03>
<fC03 i1="11" i2="X" l="SPA">
<s0>Estructura</s0>
<s5>12</s5>
</fC03>
<fC03 i1="12" i2="X" l="FRE">
<s0>Pureté</s0>
<s5>13</s5>
</fC03>
<fC03 i1="12" i2="X" l="ENG">
<s0>Purity</s0>
<s5>13</s5>
</fC03>
<fC03 i1="12" i2="X" l="SPA">
<s0>Pureza</s0>
<s5>13</s5>
</fC03>
<fC03 i1="13" i2="X" l="FRE">
<s0>Energie</s0>
<s5>14</s5>
</fC03>
<fC03 i1="13" i2="X" l="ENG">
<s0>Energy</s0>
<s5>14</s5>
</fC03>
<fC03 i1="13" i2="X" l="SPA">
<s0>Energía</s0>
<s5>14</s5>
</fC03>
<fC03 i1="14" i2="X" l="FRE">
<s0>Rayon X</s0>
<s5>15</s5>
</fC03>
<fC03 i1="14" i2="X" l="ENG">
<s0>X ray</s0>
<s5>15</s5>
</fC03>
<fC03 i1="14" i2="X" l="SPA">
<s0>Rayos X</s0>
<s5>15</s5>
</fC03>
<fC03 i1="15" i2="X" l="FRE">
<s0>Morphologie</s0>
<s5>16</s5>
</fC03>
<fC03 i1="15" i2="X" l="ENG">
<s0>Morphology</s0>
<s5>16</s5>
</fC03>
<fC03 i1="15" i2="X" l="SPA">
<s0>Morfología</s0>
<s5>16</s5>
</fC03>
<fC03 i1="16" i2="X" l="FRE">
<s0>Microscopie électronique balayage</s0>
<s5>17</s5>
</fC03>
<fC03 i1="16" i2="X" l="ENG">
<s0>Scanning electron microscopy</s0>
<s5>17</s5>
</fC03>
<fC03 i1="16" i2="X" l="SPA">
<s0>Microscopía electrónica barrido</s0>
<s5>17</s5>
</fC03>
<fC03 i1="17" i2="X" l="FRE">
<s0>Microscopie électronique transmission</s0>
<s5>18</s5>
</fC03>
<fC03 i1="17" i2="X" l="ENG">
<s0>Transmission electron microscopy</s0>
<s5>18</s5>
</fC03>
<fC03 i1="17" i2="X" l="SPA">
<s0>Microscopía electrónica transmisión</s0>
<s5>18</s5>
</fC03>
<fC03 i1="18" i2="X" l="FRE">
<s0>Longueur onde</s0>
<s5>19</s5>
</fC03>
<fC03 i1="18" i2="X" l="ENG">
<s0>Wavelength</s0>
<s5>19</s5>
</fC03>
<fC03 i1="18" i2="X" l="SPA">
<s0>Longitud onda</s0>
<s5>19</s5>
</fC03>
<fC07 i1="01" i2="X" l="FRE">
<s0>Métal transition</s0>
<s2>NC</s2>
<s5>08</s5>
</fC07>
<fC07 i1="01" i2="X" l="ENG">
<s0>Transition metal</s0>
<s2>NC</s2>
<s5>08</s5>
</fC07>
<fC07 i1="01" i2="X" l="SPA">
<s0>Metal transición</s0>
<s2>NC</s2>
<s5>08</s5>
</fC07>
<fN21>
<s1>268</s1>
</fN21>
<fN44 i1="01">
<s1>OTO</s1>
</fN44>
<fN82>
<s1>OTO</s1>
</fN82>
</pA>
</standard>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=IndiumV3/Data/Main/Repository
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001416 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Repository/biblio.hfd -nk 001416 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=   *** parameter Area/wikiCode missing *** 
   |area=    IndiumV3
   |flux=    Main
   |étape=   Repository
   |type=    RBID
   |clé=     Pascal:12-0347996
   |texte=   Synthesis of colloidal nanoscaled copper-indium-gallium-selenide (CIGS) particles for photovoltaic applications
}}

Wicri

This area was generated with Dilib version V0.5.77.
Data generation: Mon Jun 9 10:27:54 2014. Site generation: Thu Mar 7 16:19:59 2024